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The numerical solution of the problem of linear compression of a viscous, porous 
material in a cylindrical die is used as a basis for describing the regular, wave, 
and transient compaction conditions. The standard conditions for the operation 
of different compaction modes are determined. 

Introduction. It is known that qualitatively different compaction conditions, the 
regular [1-3] and the wave [4] mode, can occur in compacting hot powder materials. The regu- 
lar compaction mode involves instantaneous transmission of the perturbation from the plunger 
to the entire volume of the material to be compacted, while the inertia of the medium is 
virtually absent (Re << i) [3]. The wave compaction mode occurs when the perturbations are 
transmitted successively from the plunger, and compaction is localized in a narrow compression 
zone. Such conditions are characterized by rather large Re numbers [4]. 

Theoretical investigations of the wave and the regular compaction modes do not provide 
an answer to the question concerning the standard conditions of their occurrence. Taking 
into account the limiting nature of both sets of conditions, it is important to consider the 
many variants of conditions of compacting a porous powder mass, brought to a high tempera- 
ture. This also involves investigation of the transient processes occurring in the inter- 
mediate range of Reynolds numbers; The mathematical description of the regular and the wave 
modes given in [1-4] is based on the steady-state equations of motion. However, calcula- 
tions of the transient characteristics of the compaction process and the dynamics of speed 
and density variation throughout the volume of the material to be compacted are of practical 
importance. These problems can be solved on the basis of a generalized model by means of 
numerical investigations of nonstationary equations of continuity and motion, simultaneously 
with rheological relationships. 

Statement of the Problem. We shall consider here axial, linear compression of a hot 
powder material in a cylindrical die. The behavior of the material in compaction is described 
by the following system of equations of continuity, 

Op s o 
a - - t - -  - = o ( 1 )  

and motion, 

PPl - - ~ - - + u  = Ox 

simultaneously with the rheological relationship 

4 p,n au 

= 3 ~h 1- -p  Ox (3) 

The density (porosity) distribution along the pressing height is assigned at the initial 
instant of time: 
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Plt=o = Po (x). ( 4 )  

We assume that material flow is absent at the lower boundary of the specimen, 

u[~=o = 0, (5) 

while, at the Upper end of the specimen, there occurs either operation at the assigned pres- 
sing rate, 

ul~=m,~ = - -  up(t), 

or operation with the assigned pressing force, 

PI~=H(t) = - -  Np (t), ( 6 )  

which is considered below. 

It should be noted that the statement of problem (1)-(6) comprises the equation of 
motion comprising the transient and inertial terms, which makes it possible to consider vari- 
ous transient processes in compaction: operation where the regular or the wave mode is estab- 
lished, describe the range with respect to the Re number between these two limiting cases of 
compaction, etc. 

The Lagrange coordinates were used in [3, 5] for solving problems of uniaxial compres- 
sion of visous, porous materials. Substituting the Lagrange variables q and T for the x and 
t coordinates (the physical meaning of the Lagrange coordinates used here has been described 
in [3]), we arrive at the following system of equations: 

Ov Ou 

O~ Oq 

Ou O(~ 
Px 0"~ Oq 

4 1 Ou 
C;= ~h 

3 (v - -  1) v '~ Oq 

(7) 

The initial and the boundary conditions in the new coordinate system are the following: 

P]~=o= Po(q), 

ulq=o --- 0 Plq=MU) = - - N p ( t ) .  

The difference scheme of second-order accuracy is used for the numerical solution 
of the system of equations (7). Assume that Aq is the spatial step, while A~ is the time 
step. 

At the first step, the predictor, approximation of the specific volume ~jn+i with 
first-order accuracy with respect to time is realized: 

q+'= v7 + y (.j+1 -.i'-,) 

for ]--/=O,N 

(u 7 = u (/Aq, iA~), 0 ~ j ~ N), 
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at the left-hand boundary, 

v~+ ~ 

at the right-hand boundary, 

3 . N p  1 ~,~+' = v~  - A~ 
4 ~h ~v'  

where 

;~ = A'~;IAq,  i~ (v)  = 
(v - -  1)v m 

The second step -- the velocity corrector -- constitutes the analog of the Krant--Nicholson 
scheme: 

for j = 0, N, 

u~+l  . A*; 4 ~h {1~ ~ 1 ( u ~ + l - - u T ) -  
= ui + 2Aq ---------T 3 -  Pl i+7  

, (uT--uT-,) + ~"+~I ~uj+,- -- 
J-T J+7 

-- ~'~-I (~7 +1 -- UT---+~)} �9 
1-7  

The trial-and-error method is used to solve the derived system of implicit equations with 
respect to the speed at the top layer u7+I Calculations performed by means of the above 
difference scheme have not revealed stability limitations. 

Analysis of the Numerical Calculations Results: As a result of the numerical solution, 
we determined the density, speed, and stress fields in the volume of the material to be com- 
pacted. An analysis of the results of numerical experiments made it possible to determine 
the standard conditions for realizing different modes of compacting a hot, porous mass. The 
generalized Re number, an expression for which was obtained in [4], we chosen as the criter- 
ion determining whether a particular compaction mode is in operation: 

Re (~ = V~t_pO - p)/~ip, pIH0 (8) 
01 

This is in fact a dimensionless set, which depends on the rheological and physical character- 
istics of the material to be compacted, the dimensions of the billet, and the technological 
parameters of the process. It is more convenient for analyzing the material flow for the as- 
signed press force. The ranges of the Re number corresponding to the compaction modes des- 
cribed earlier [1-4] have been determined. 

It has been found that one of the limiting cases occurs in the Re < Re, range: the 
regular compaction mode corresponding to a linear velocity profile and simultaneous compac- 
tion of all individual volumes within the hot, porous billet (Fig. la). The boundary value 
Re, can be determined in analyzing the velocity and density profiles. It is clear that this 
boundary is rather relative, corresponding to Re, - i. The formation of a linear velocity 
profile does not occur instantaneously, but within the hydrodynamic stabilization time ~h = 
H~pl/n I (Fig. ib). Numerical calculations make it possible to determine the time �9 during 
which the effect of inertia on the compaction process manifests itself. For instance, for 

Dl = 10 8 Pa. sec, t~ = 0.i m, PI = 5" i~ a kg/m a, and Np = i0~ Pa (Re = 0.2), the hydrodyna- 
mic stabilization e is equal to ~h = �9 10 -s sec. It is found that this time is much 
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Fig. i. (a) Distribution of the density p along the 
pressing height at different times of the process: i) 
T = 10 -3 sec; 2) 5"10-3; 3) 10-2; 4) 0.5; (b) trends in 
the formation of the linear profile of velocity u (m/sec) 
in the regular mode of compaction: i) T = 10 -3 sec; 2) 
10-4; 3) 10 -5 sec; 4) 10-6; parameters: H 0 = 0.i m, Np = 
109 Pa, and Dz = 106 Pa'sec. 
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Fig. 2. Distribution of the density p along the pressing 
height: i) T = 0; 2) 1.3" 10 -5 sec; 3) 3"10-5; 4) 7" lO-S; 

5) 9" 10-5; calculation parameters: H 0 = 0.i m; Pz =5" 103 
kg/mS; (a) Nz = 105 Pa-sec; Np = 109 Pa; (b) 105 and I0 z2 

shorter than the characteristic compaction time, which can be estimated for the chosen param- 
eters: ~.~ = 4Dz/3Np = 10 -3 sec. Thus, if the material is compacted under the manifestly evident 
regular mode operation, the system does not experience the inertial factor, since inertia 
manifests itself during the very short initial time of the process. The analytic solution 
of the problem, obtained by neglecting the inertia of the medium [3], can be used for investi- 
gating the compaction process in the Re, range. 

The other limiting case -- compaction of a hot, porous billet under wave conditions -- 
occurs in the range of Re values starting with a certain lower limit, Re** - 25 (Fig. 2a). 
If Re >> Re** (for instance, :Re ~ 50-70), the compaction wave has a narrow front (Fig. 2b)o 
In the process of analyzing numerically the model of the wave compaction mode, one can find 
the transient time ~tr of establishment of the operating mode resulting from the unsteadiness 
of the process. It is determined by the magnitude of the wave formation segment and the 
wave propagation velocity throughout the volume of the material to be compacted. For instance, 
for nz = 105 Pa" sec, Np = I0 zz Pa, H 0 =~_.~ m, P0 = 0.5, Px = 5~ 103 kg/m ~, transition to the 
wave mode occurs during the time ~tr = 1 sec. 

However, another factor must be taken into account besides the characteristic compaction 
time ~,: the pressing time Tp. This is an extraneous parameter and is considered to be as- 
signed. For the wave mode of operation to develop in compaction, it is necessary that 
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Fig. 3. Distribution of the density p along the 
pressing height H 0 = 0.i m at different process 
times: i) T = 0; 2) 6.5" 10 -6 sec; 3) 1.5-i0 -s sec; 
4) i0 -# sec; 5) i0 -s sec; parameters: a) Dz = 106 Pa" 
sec; Np = 10 I~ Pa; b) 10 s and 10 I~ . 

It is clear that, if one of the inequalities in (9) is not satisfied, either uncompacted 
regions remain in the material or the compaction wave cannot form at the end of the force 
application time in the press. It should be noted that numerical calculations support the 
validity of the asymptotic behavior for the above range of Reynolds numbers that has been 
suggested in [4]. 

The values of the Reynolds number lying between the limiting values Re, and Re*** cor- 
respond to transient compaction conditions. These conditions (Fig. 3) combine the properties 
of both wave and regular operating modes, which, however, manifest themselves to a greater or 
lesser degree, depending on the specific Re value. If Re is close to Re,, the characteristics 
of the transient mode are closer to those of the regular mode. However, there is a signifi- 
cant feature: There is no self-equalization of the density from the very beginning of the pro- 
cess, which is characteristic for the regular mode of compaction. One can say even more: If 
the initial density throughout the volume of the material is the same (there is no density 
variation) a density gradient develops under this set of transient conditions. This carac- 
teristic obtains during hydrodynamic stabilization, after which the usual pattern occurs, and 
the material is compacted under the regular operating mode. 

If Re § Re**, the transient operating mode is closer to the wave mode, with the differ- 
ence, however, that the front of the compaction wave is broad and blurred, not narrow as in 
the case of Re > Re**. For transient compaction conditions, the time during which the system 
reaches a steady state is important and must not be neglected. This means that studies of 
the compaction processes characterized by Re, < Re < Re** reach beyond the framework of ap- 
proximate models, where transient processes are neglected, and can be carried out only on the 
basis of numerical considerations of a generalized model. 

NOTATION 

t and x, time and present height, respectively (Euler coordinates); T and q, time and 
present mass, repsectively (Lagrange coordinates); p, density of the material relative to 
the density of its incompressible base Pz; u and o, components of the velocity and stress 
tensors in the longitudinal direction, respectively; Dz, viscosity of the incompressible base; 
Np and u , force acting in the press and plunger velocity, respectively; H 0 and M, initial P 
pressing height and mass, respectively; P0, initial pressing density. 
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